Thursday, October 30, 2008

Calling all smarties

Anyone got a clue how to solve this?


Anonymous said...

A 5x13 rectangle has an area of 65. Half a rectangle has an area of 32.5.

The four shapes in figure one have an area of 32 (12+5+7+8).

Don't know where the other 0.5 is (since it looks like half the rectangle) but if the four shapes have an area of 32, then the other side of the rectangle must have an area of 33 (65-32).

So rearranging the four shapes on the other side of the triangle would leave an empty square with area 1.

Anonymous said...

Those dirty bastards! The two figures above are not triangles. They look like it, but they aren't quite. The diagonal line is not straight - it has a kink where the blue and red triangles meet. The blue triangle is 2 units high by 5 units wide. The red triangle is 3 units high, so for the diagonal line to run at the same angle as the blue, the red triangle would have to be 7.5 units wide. However, it's 8 units wide.

Ben said...

Predictably, my brilliant readership had little trouble with this one.

Of course, the answer lies in the slightly different slopes of the two hypotenuses. They sure look parallel at first glance, though, don't they?